http://WWW.POWERENGINEERSCO.NET
POWERENGINEERSCOMPANY 57e23f4d9ec66844909da240 False 833 11
OK
background image not found
Found Update results for
'increase'
9
Servo Volatage Stabilizer REASON OF FAILURE ON LIGHTING LOAD : Similar is the case with bulbs and tubes, when voltage increases above 230 volts. For example, at 270 volts, the power consumption of 60W bulb increases by almost 40% and the life of bulb reduce from normal 1000 Hours to 100 Hours only as explained in broacher. Power Engineers Company is a leading supplier of Servo Voltage Stabiliser in Duabi, UAE.
Energy Savings : The energy savings achieved by voltage optimisation are an aggregation of the improved efficiency of all equipment across a site in response to the improvements in the power quality problems outlined above. It has been and continues to be a key technique for savings in energy consumption. Research in Taiwan suggested that, for an industrial supply, for voltage reduction upstream of the transformer, there is a 0.241% decrease of energy consumption when the voltage is decreased by 1%, and an increase of 0.297% when the voltage is increased by 1%. This assumed a mixture of loads including 7% fluorescent lighting, 0.5% incandescent lighting, 12.5% three phase air conditioners, 5% motors, 22.5% small 3-phase motors, 52.5% large 3-phase motors. for more details http://www.powerengineersco.com
REASON OF FAILURE ON MOTOR LOAD : Electrical equipment’s are designed for 240 volts (single phase) or 415 volts (3-phase) and operate with optimum efficiency at its rated voltage. 90% of industrial load consists of motors. Electric motor (particularly smaller capacity motors up to 7.5 H.P.) draws considerably high current at high voltage and increases energy consumption, increases MDI and reduces power factor etc. These excessive power losses of motors generated at higher voltage results in premature failure of electrical equipment’s. Also after the rewinding of motor its efficiency reduced by 3-5% and you have to replace the motor with new one after 2/3 times rewinding.
The energy savings achieved by voltage optimisation are an aggregation of the improved efficiency of all equipment across a site in response to the improvements in the power quality problems outlined above. It has been and continues to be a key technique for savings in energy consumption. Research in Taiwan suggested that, for an industrial supply, for voltage reduction upstream of the transformer, there is a 0.241% decrease of energy consumption when the voltage is decreased by 1%, and an increase of 0.297% when the voltage is increased by 1%. This assumed a mixture of loads including 7% fluorescent lighting, 0.5% incandescent lighting, 12.5% three phase air conditioners, 5% motors, 22.5% small 3-phase motors, 52.5% large 3-phase motors. for more details http://www.powerengineersco.com
Energy Saver in Ahmedabad The energy savings achieved by voltage optimisation are an aggregation of the improved efficiency of all equipment across a site in response to the improvements in the power quality problems outlined above. It has been and continues to be a key technique for savings in energy consumption. Research in Taiwan suggested that, for an industrial supply, for voltage reduction upstream of the transformer, there is a 0.241% decrease of energy consumption when the voltage is decreased by 1%, and an increase of 0.297% when the voltage is increased by 1%. This assumed a mixture of loads including 7% fluorescent lighting, 0.5% incandescent lighting, 12.5% three phase air conditioners, 5% motors, 22.5% small 3-phase motors, 52.5% large 3-phase motors. for more details http://www.powerengineersco.com
REASON OF FAILURE ON MOTOR LOAD : Electrical equipment’s are designed for 240 volts (single phase) or 415 volts (3-phase) and operate with optimum efficiency at its rated voltage. 90% of industrial load consists of motors. Electric motor (particularly smaller capacity motors up to 7.5 H.P.) draws considerably high current at high voltage and increases energy consumption, increases MDI and reduces power factor etc. These excessive power losses of motors generated at higher voltage results in premature failure of electrical equipment’s. Also after the rewinding of motor its efficiency reduced by 3-5% and you have to replace the motor with new one after 2/3 times rewinding.
Over Voltage refers to voltage higher than the voltage at which equipment is designed to operate most effectively. It causes a reduction in equipment lifetime and increases in energy consumed with no improvement in performance. The 16th edition of the Wiring Regulations BS7671 makes the following statements in relation to overvoltage: “A 230V rated lamp used at 240 will achieve only 55% of its rated life” and “A 230V linear appliance used on a 240V supply will take 4.3% more current and will consume almost 9% more energy.” Various technologies can be used to avoid overvoltage, but it must be done so efficiently so that energy savings resulting from using the correct voltage are not offset by energy wasted within the device used to do so. Reliability is also important, and there are potential problems inherent in running full incoming power through electro-mechanical devices such as automatic voltage controller. for more details http://www.powerengineersco.com
Over Voltage refers to voltage higher than the voltage at which equipment is designed to operate most effectively. It causes a reduction in equipment lifetime and increases in energy consumed with no improvement in performance. The 16th edition of the Wiring Regulations BS7671 makes the following statements in relation to overvoltage: “A 230V rated lamp used at 240 will achieve only 55% of its rated life” and “A 230V linear appliance used on a 240V supply will take 4.3% more current and will consume almost 9% more energy.” Various technologies can be used to avoid overvoltage, but it must be done so efficiently so that energy savings resulting from using the correct voltage are not offset by energy wasted within the device used to do so. Reliability is also important, and there are potential problems inherent in running full incoming power through electro-mechanical devices such as automatic voltage controller. for more details http://www.powerengineersco.com
Exporter of Distribution Transformers & Automatic Voltage Controllers Surat. Under Voltage refers to voltage lower than the voltage at which equipment is designed to operate most effectively. If the design of the VO does not take into consideration voltage drop over distance to remote power users, then this may lead to premature equipment failure, failure to start up, increased temperature in the case of motor windings and loss of service. Leading supplier of Distribution Transformers & Automatic Voltage Controllers in Vadodara Surat Rajkot Daman Vapi Ahmedabad Ankleshwar Mumbai Pune Hydrabad Indore etc. for more details http://www.powerengineersco.com
1
false